
18. A random variable x has the following p.d.f.
$f(x)\left\{\begin{array}{cc}k\left(x-x^{2}\right), & 0 \leq x \leq 1 \\ 0 & , \text { otherwise }\end{array}\right.$.
Find the value of k.
Also find the mean and mode of the distribution.

PART - C

Answer any TWO questions

19. (i) Examine the continuity at $\mathrm{x}=0,1,2$ of the function $\mathrm{f}(\mathrm{x})$ defined below.

$$
f(x)=\left\{\begin{array}{cc}
x^{2} & x \leq 0 \\
2 x & 0<x \leq 1 \\
4 x^{2}-2 x & 1<x \leq 2 \\
10-x & x>2
\end{array} .\right.
$$

(ii) Prove that a non-increasing sequence of real numbers which is bounded below is convergent.
20. (i) If the moments of a discrete random variable X are given by $\mathrm{E} E\left[X^{r}\right]=0.6$ for $\mathrm{r}=1,2,3, \ldots$ showthat $\mathrm{P}(\mathrm{x}=0)=0.4 ; \mathrm{P}(\mathrm{x}=1)=0.6 \quad \mathrm{P}(\mathrm{x}=\mathrm{x})=0$, otherwise.
(ii) Find the M.G,F of the random variable X whose moments are $\mu_{r}^{1}=r$! for $\mathrm{r}=1,2,3, \ldots$
21. (i) If $f(x, y)=\frac{x+y}{x^{2}+y^{2}}$, find $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial^{2} f}{\partial x^{2}}$ and $\frac{\partial^{2} f}{\partial y^{2}}$.
(ii) X and Y are jointly discrete random variables with the following joint probability distribution.

$$
p(x, y)=\left\{\begin{array}{lc}
\frac{1}{4}, & x, y)=(-3,-5),(-1,1) \\
0, & (1,1),(3,5) \\
\text { otherwise }
\end{array}\right.
$$

Find the following (i) $\mathrm{E}(\mathrm{X})$ (ii) $\mathrm{E}(\mathrm{Y})$ (iii) $\mathrm{E}(\mathrm{XY})$ and (iv) $E(x \quad y=1)$
22. (i) Express the matrix $A=\left[\begin{array}{lll}5 & 4 & 2 \\ 1 & 6 & 2 \\ 3 & 5 & 7\end{array}\right]$ as the sum of a symmetric and a skew symmetric matrix.
(ii) Find the rank of the matrix $A=\left[\begin{array}{lll}1 & 5 & 6 \\ 0 & 0 & 0 \\ 2 & 4 & 5\end{array}\right]$.

